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Abstract—Consideration was given to the multi-index problems of linear and integer linear
programming of the transport type. An approach based on the study of reducibility of the
multi-index transport problems to that of seeking a flow on the network was proposed. For the
multi-index problems with decomposition structure, a reduction scheme enabling one to solve
the original multi-index problem using the cyclic decomposition of the minimum-cost flow of
the auxiliary flow problem was constructed. The developed method underlies the heuristic algo-
rithm to solve the NP-hard integer multi-index problem with a system of constraints featuring
decompositional properties and general cost matrix.

DOI: 10.1134/S0005117912010092

1. INTRODUCTION

There exists a wide class of applied problems of resource assignment that are formalizable as
multi-index problems of (integer) linear programming of the transport type. They are represented
(see [1–5]) by the problems of volume-calendar scheduling, assignment of the powers of data trans-
mission channels, formation of the order portfolio, extraction and transportation of gas, processing
of gas concentrate, and others. The multi-index assignment problems (subclass of the multi-index
transport problems of integer linear programming) appear, for example, in the scheduling theory
[6, 7] and computer vision [8, 9].

The general methods such as the simplex method or the Karmarkar algorithm [10, 11] can be
used to solve the multi-index transport problems of linear programming. There exists a number
of papers devoted directly to the methods of solving the multi-index problems of transport-type
linear programming of which the best studied is the class of the two-index problems [12]. Special
subclasses of the tri-index and four-index problems are considered, for example, in [13–15]. The
general formulation of the class of multi-index problems is considered in [13]. The conditions under
which one can reduce dimensionality and/or the number of indices of the multi-index transport
problems were discussed in [16]. The geometrical properties of the set of permissible solutions of
the multi-index transport systems of linear inequalities are discussed in [14, 17, 18].

Solution of the transport-type integer multi-index problems of linear programming is of special
interest. The constraint matrix of the two-index transport problem is known to be absolutely
unimodular, and, therefore, the class of two-index integer problems of linear programming is solv-
able in a polynomial time [12]. Yet the general formulation of the class of integer multi-index
transport problems proves to be NP-hard even in the tri-index case [19]. Moreover, no polynomial
ε-approximate algorithms exist for the problems of this class, otherwise, P = NP, this result being
also applicable to the tri-index case [20]. In the absence of additional constraints on the param-
eters for solution of the multi-index integer problems, only the general methods of integer linear
programming such as the branch-and-bound or Gomory methods [10, 21] which are exponential
in terms of computational difficulty can be used to solve the multi-index integer problems. The
class of multi-index assignment problems is best studied among the integer multi-index transport
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problems. An extensive review of the results obtained in the field of analysis of computational com-
plexity and construction of the approximate algorithms to solve a special subclass of the multi-index
assignment problem was given in [22]. Additionally, the papers [23–25] deserve mentioning.

Determination of the subclasses of problems solvable with the use of the flow methods represents
one of the promising lines of development of efficient algorithms to study the multi-index linear
programming problems. Active research in the area of network optimization [26] exerts great
influence on its progress. For the case of reducibility of the linear programming problems to the
flow ones, the existing efficient flow algorithms [27, 28] enable one to construct algorithms for their
solution that have lower computational complexity as compared with the estimates established by
the general methods for solution of the linear programming problems. In some cases, reduction
to the flow problem also allows one to propose an algorithm guaranteeing determination of the
integer solution of the original problem and thus to specify the polynomially solvable subclasses
of problems among the problems of the integer linear programming. The possibility of reducing
the linear programming problems to the flow problems was considered in [29–32] which from each
other in the reducibility concepts used. The problem of reducibility of the multi-index transport
problems of linear programming is less studied. The two-index problems are known to be reducible
to the flow problems [12]. The question of reducibility of the multi-index problems with an arbitrary
number of indices was considered in [1, 33, 34].

As was shown in [1, 33], the special conditions for two-embeddedness of the set of the subsets
of indices over which summation is carried out in the problem constraint system are sufficient
(necessary and sufficient in the case of tri-index problems; otherwise, P = NP) for reducibility the
problem of minimal-cost flow. The reducibility concept used in [1, 33] is distinguished for the
correspondence between the variables of the original problem and the arcs of the auxiliary network.
The proposed scheme of reduction ensures that an arbitrary optimal flow of the auxiliary network
defines an optimal solution of the original problem where the variables are assigned the values
of flow along the corresponding arcs of the network. If the conditions for two-embeddedness are
satisfied, then the solution of the transport-type multi-index linear programming problem comes
to seeking a minimum-cost flow in the network with O(m+ n) vertices and O(m+ n) arcs, where
n is the number of variables and m is the number of inequalities of the system of constraints of the
original multi-index problem.

The concept of reduction of the system of linear inequalities to the problem of search of the per-
missible circulation was formulated in [34] at studying the multi-index systems of linear inequalities.
Its important characteristic lies in the correspondence between the variables of the original system
of inequalities and simple cycles of the auxiliary network. The proposed reduction scheme ensures
that an arbitrary permissible circulation of the auxiliary network defines a permissible solution of
the original inequality system where the values of flows along the corresponding simple cycles are
assigned to the variables. The value of flow along the simple cycles is determined through the cyclic
decomposition of the permissible circulation.

Various decomposition subclasses of the tri-index assignment problems were considered previ-
ously at studying the multi-index problems of integer linear programming. The criterion for the

tri-index assignment problem is defined as
n∑

i=1

n∑

j=1

n∑

k=1
cijkxijk → min. The class of tri-index axial

assignment problems with the cost matrix like cijk = aibjdk, i, j, k = 1, n, was studied in [35],
and its NP-hardness was proved. Two classes of the tri-index axial assignment problems with the
cost matrices like cijk = aij + bjk + dki and cijk = min(aij + bjk, bjk + dki, dki + aij) were studied
in [20], their NP-hardness was proved, and additionally they were proved to have no polynomial
ε-approximate algorithms; otherwise, P = NP. Their NP-hardness was proved and the polynomial
ε-approximate algorithms with ε = 1/2 and ε = 1/3, respectively, were constructed under the
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additional conditions of the triangle inequality for two decomposition classes considered in [20].
The multi-index transport problems with decomposition structure are less studied. The criterion

in the multi-index transport problems is defined as
n∑

i1=1

n∑

i2=1
. . .

n∑

ik=1
ci1i2...ikxi1i2...ik → min. The

multi-index axial assignment problems with the cost matrix having a decomposition structure like

ci1i2...ik = f(d
(1)
i1i2

, d
(2)
i2i3

, . . . , d
(k−1)
ik−1ik

) were studied in [36], and the polynomial ε-approximate algo-
rithms where ε is not a constant and depends on the parameters of the original problem were
constructed. The estimates of ε are specified for certain classes of the function f . The results are
summed up in [37] at studying the multi-index axial transport problems.

The present paper is a continuation of the studies of reducibility of the multi-index transport
problem to the flow problems. In Section 2, the multi-index transport-type problems of linear
programming are formalized, and the necessary notation is introduced. An auxiliary notion of cyclic
decomposition of circulation that is used at describing the concept of reducibility is formulated in
Section 3. Consideration is given to the algorithm to construct the cyclic decomposition. Section 4
is devoted to formalization of the reducibility concept which generalizes the scheme of reduction
used in [34]. This scheme is grounded on the correspondence between the variables of the original
problem and the simple cycles of the auxiliary network. Next, Section 5 shows that the special
decomposition conditions for the set of the index subsets (defining the problem constraints) and the
decomposition conditions of the multi-index cost matrix (defining the coefficient of the problem’s
objective function) suffice for reducibility to the problem of search of the minimum-cost flow. Under
the established decomposition conditions, solution of the multi-index transport-type problem of
linear programming comes to seeking a minimum-cost flow on a network with O(n) vertices and
O(n) arcs, where n is the number of variables of the original multi-index problem. This method
of solution of the multi-index problems with the decomposition structure is applicable also to the
integer multi-index problems. The multi-index axial assignment problem (or the multi-index axial

transport problem) with the cost matrix like ciii2...ik = d
(1)
iii2

+ d
(2)
i2i3

+ . . . + d
(k−1)
ik−1ik

exemplifies the
problem featuring the considered properties of decomposition. On the basis of the constructed
method, Section 6 proposes a heuristic algorithm to solve the NP-hard class of the multi-index
transport problems with a constraint system featuring properties of decomposition and the cost
matrix of general form.

2. MULTI-INDEX TRANSPORT PROBLEMS

To formulate the multi-index transport-type problems of linear programming we make use of the
formalization proposed in [13]. Let s ∈ N and N(s) = {1, 2, . . . , s}. We assign to each number l
a parameter jl which is called the index and assumes values from the set Jl = {1, 2, . . . , nl},
where nl � 2, l ∈ N(s). Let f = {k1, k2, . . . , kt} ⊆ N(s). The set of values of indices Ff =
(jk1 , jk2 , . . . , jkt) will be called the t-index, and the set of all t-indices is defined as the Cartesian
product of the sets of permissible values of the corresponding indices denoted by Ef = Jk1 × Jk2 ×
. . . × Jkt . Let f ′ ⊆ f ′′ ⊆ N(s), where f ′ = {k′1, k′2, . . . , k′t′}, f ′′ = {k′′1 , k′′2 , . . . , k′′t′′}. Then, we
denote Ff ′ = (Ff ′′)f ′ if Ff ′ = (j′k′1 , j

′
k′2
, . . . , j′k′

t′
), Ff ′′ = (j′′k′′1 , j

′′
k′′2
, . . . , j′′k′′

t′′
) and j′k′i = j′′k′i , i = 1, t′. If

Ff ′ ∈ Ef ′ , Ff ′′ ∈ Ef ′′ , where f ′, f ′′ ⊆ N(s) and f ′ ∩ f ′′ = ∅, then we denote by Ff ′Ff ′′ a set such
that Ff ′Ff ′′ ∈ Ef ′∪f ′′ and (Ff ′Ff ′′)f ′ = Ff ′ , (Ff ′Ff ′′)f ′′ = Ff ′′ . Now, we determine f = N(s)\f .
Then, according to the introduced notation FN(s) = FfFf if Ff = (FN(s))f and Ff = (FN(s))f .

A real number zFf
, Ff ∈ Ef , is assigned to each set Ff . As in [13], this map of the set Ef of

t-indices onto the set of real numbers is called the t-index matrix denoted by {zFf
}. Let us consider

the s-index matrix {zN(s)} using the following notation:
∑

Ff∈Ef

zFfFf
=

∑

jk1∈Jk1

∑

jk2∈Jk2
. . .

∑

jkt∈Jkt
zFf Ff

, Ff ∈ Ef .
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The notation of the subsums of the s-index matrix will be used to formalize the multi-index trans-
port problems.

LetM be the given set, M ⊆ 2N(s); {aF
f
}, {bF

f
}, the given |f |-index matrices of free coefficients,

0 � aF
f
� bF

f
, Ff ∈ Ef , f ∈ M ; {cFN(s)

}, the given s-index matrix of the coefficients of the objec-

tive function; {xFN(s)
}, the s-index matrix of the unknowns. Then, the multi-index transport-type

problem of linear programming is formalized as follows:

aF
f
�

∑

Ff∈Ef

xFfFf
� bF

f
, Ff ∈ Ef , f ∈ M ; (1)

xFN(s)
� 0, FN(s) ∈ EN(s); (2)

∑

FN(s)∈EN(s)

cFN(s)
xFN(s)

→ min . (3)

Problem (1)–(3) is denoted by w(s;M ;n1, n2, . . . , ns; {aF
f
}, {bF

f
}, f ∈ M ; {cFN(s)

}), and under

fixed M the class of all multi-index problems like (1)–(3) is denoted by W (M). If w ∈ W (M), then
a constraint like (1) of the problem w corresponding to the fixed set f ∈ M and fixed set Ff ∈ Ef
is denoted by d(w, f, Ff ).

3. CYCLIC DECOMPOSITION OF FLOW

Search of the minimum-cost circulation on the network with bilateral throughputs is considered
as the flow problem. It is common knowledge that the permissible circulation can be established
using the algorithm for search of the maximal flow in the corresponding canonical network, and
the minimum-cost circulation, using the algorithm to seek the minimum-cost flow of the predefined
value [26]. Importantly, the constraint system matrix of the problem of seeking the circulation is
an absolutely unimodular one [10]. Therefore, in the joint network with the integer throughputs
there always exists an integer permissible circulation. It can be decomposed into flows along the
simple cycles of the network. The integer circulation can be decomposed into integer flows along
cycles. These results will be used in what follows to study reducibility of the multi-index transport
problems to the flow problems.

Let us consider a formulation of the problem of seeking a minimum-cost flow (circulation) [26].
Let G = (VG, AG) be an oriented loop-free graph. Here, VG and AG are, respectively, the sets of
vertices and arcs of the graph G, AG ⊆ V 2

G. The subscript G in the notation of the sets of vertices
and arcs is omitted wherever this does not create ambiguity. We denote by lij and uij, respectively,
the lower and upper throughputs of the arc (i, j), 0 � lij � uij; eij is the cost of the arc (i, j);
xij is the magnitude of the flow through the arc (i, j), (i, j) ∈ A. It is required to determine the
unknown variables xij , (i, j) ∈ A, which are solutions of the following linear programming problem:

∑

(j,i)∈A
xji −

∑

(i,j)∈A
xij = 0, i ∈ V ; (4)

lij � xij � uij, (i, j) ∈ A; (5)
∑

(i,j)∈A
eijxij → min . (6)

Problem (4)–(6) is denoted below by v(G; lij , uij , eij , (i, j) ∈ A). By the circulation is meant a set
of nonnegative values xij, (i, j) ∈ A, satisfying the constraint system (4). If additionally xij ∈ Z,
(i, j) ∈ A, then by the circulation is meant an integer. By the permissible circulation is meant a set
of values xij , (i, j) ∈ A, satisfying the constraint system (4), (5). By the minimum-cost circulation
is meant the set of values of xij , (i, j) ∈ A, which is the solution of problem (4)–(6).
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The simple cycle of the graph G is denoted below for convenience by C = (i1, i2, . . . , ik+1), where
(ij , ij+1) ∈ A, j = 1, k; i1 = ik+1; ij′ �= ij′′ for j

′ �= j′′, j′, j′′ = 1, k. We also assume for definiteness
that i1 < ij , j = 2, k. Let (u, v) ∈ A, C = (i1, i2, . . . , ik+1). Then, the notation (u, v) ∈ C means
that there exists j ∈ {1, 2, . . . , k} such that u = ij , v = ij+1; (u, v) /∈ C denotes the inverse. One
can readily see that the number of simple cycles in the graph is upper-bounded, for example, by
|V |∑

i=1
Ci
|V |(i− 1)! and, therefore, the set of simple cycles in the graph is finite. The set of all simple

problems of the graph G is denoted by C(G).

Definition 1. Let xij, (i, j) ∈ A be the circulation of the graph G. By the cyclic decomposition
of circulation is meant a set of nonnegative values yC , C ∈ C(G), such that

∑

C∈C(G)|(i,j)∈C
yC = xij ,

(i, j) ∈ A. If additionally yC ∈ Z, C ∈ C(G), then the cyclic decomposition is called the integer
decomposition.

The following results are known.

Assertion 1 [34]. For an arbitrary circulation, there exists its cyclic decomposition. For an
arbitrary integer circulation, there exists its integer cyclic decomposition.

Assertion 2 [34]. There exists an algorithm to construct a cyclic decomposition from the given
circulation which requires O(|V ||A|) computing operations.

It deserves noting that the algorithm to construct the cyclic decomposition that was proposed
in [34] guarantees construction of an integer cyclic decomposition from the given integer circulation.

4. CONCEPT OF REDUCIBILITY

We present a formalization of the reducibility concept which will be used in what follows to study
the reducibility of the multi-index problems to the flow problems. Let A ∈ Rn×m, b, b−, b+ ∈ Rn,
c ∈ Rm be the given parameters, and x ∈ Rm be vector of unknown variables. We denote
by w(A, b, c) the linear programming problem min{(c, x)|Ax � b, x � 0}, and by w(A, b−, b+, c), the
linear programming problem min{(c, x)|b− � Ax � b+, x � 0}. The numbers of rows and columns
of the matrix A are denoted for convenience by row(A) and col(A), respectively. We notice that
the problem w(A, b−, b+, c) can be described using notation like w(A, b, c). Nevertheless, we use the
notation w(A, b−, b+, c) if we want to emphasize that the constraint system is a system of two-sided
inequalities. We also consider the problems of integer linear programming. If w = w(A, b, c) is a
linear programming problem, then we denote by wZ the problem of integer linear programming

wZ = min{(c, x)|Ax � b, x ∈ Z
col(A)
+ }. LetW be an arbitrary class of linear programming problems.

The corresponding class of problems of integer linear programming is defined asWZ = {wZ |w ∈ W}.
We consider two classes W ′ and W ′′ of the linear programming problems. By the reducibility

of the class W ′ to the class W ′′ is meant the possibility of constructing for the arbitrary problem
w′ ∈ W ′ of the corresponding problem w′′ ∈ W ′′ so that the solution of w′′ defines solution of w′. At
formalizing a particular reduction scheme, we determine the time costs and/or particular computing
procedures related with

—construction of the constraint system matrix of problem w′′ from the original parameters of
problem w′;

—construction of the free coefficients and the coefficients of the objective function of problem w′′

from the original parameters of problem w′;
—construction of the solution of problem w′ from the solution of problem w′′.

The notation of the reduction scheme as suggested below is introduced by analogy with the
notation of R. Graham used to classify the problem of the scheduling theory [38].
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MULTI-INDEX TRANSPORT PROBLEMS 123

Definition 2. The class W ′ will be said to be t1 − s1|t2 − s2|t3 − s3 reducible to the class W ′′ if
for any problem w′ = w(A′, b′, c′) ∈ W ′ it is possible to construct the matrix A′′ in time O(t1) and
in time O(t2) the vectors b′′ and c′′ such that w′′ = w(A′′, b′′, c′′) ∈ W ′′, and at that

—the problem w′ is consistent (bounded) if and only if the problem w′′ is consistent (bounded);
—if the optimal (permissible) solution x′′ of problem w′′ is known, then the optimal (permissible)
solution x′ of the problem w′ can be constructed in time O(t3).

Here, (−s1), (−s2), (−s3) is the optional row notation of the computing procedures related with
construction of the constraint system matrix, free coefficient, and coefficients of the objective
function and with construction of the problem solution, correspondingly.

By the problem w′′ (see Definition 2) is meant a problem corresponding to w′. Sometimes,
the estimators of the computing complexity t1, t2, and t3 are denoted for convenience by L or P
by which are meant functions depending linearly or polynomially on the size of the particular
problem w′.

The present paper considers the possibility of reducing the subclass of multi-index transport-type
linear programming problems to the class of seeking the minimum-cost circulation. We consider
at that the reduction schemes where solution of the original multi-index problem is determined
through the cyclic decomposition minimum-cost flow of the corresponding flow problem. The class
of flow problems is defined as follows. We denote by Graph the set of all oriented loop-free graphs.
The class of search of the minimum-cost flow is defined as the WGraph = {v(G, lij , uij , eij , (i, j) ∈
AG)|lij , uij ∈ R+, eij ∈ R, (i, j) ∈ AG, G ∈ Graph}.

Definition 3. Let W be the class of linear programming problems with two-sided system of
inequalities. The class W is said to be t1|t2 − equal|t3 − cycle reducible to the class WGraph if the
class W is t1|t2|t3 reducible to the class WGraph; and if v = v(G; lij , uij , eij , (i, j) ∈ AG) ∈ WGraph

is a problem corresponding to the problem w = w(A, b−, b+, c) ∈ W , then there exist injective
functions α : {1, 2, . . . , row(A)} → AG, β : {1, 2, . . . , col(A)} → C(G) such that the following
conditions are satisfied:

—lα(i) = b−i , uα(i) = b+i , i = 1, row(A); l(u,v) = 0, uuv = b∗, (u, v) ∈ AG\{α(i)|i = 1, row(A)},
where b∗ is some sufficiently great value,—for definiteness, b∗ =

row(A)∑

i=1
b+i ;

—if the circulation zij , (i, j) ∈ AG, is the optimal (permissible) solution of the problem v
and yC , C ∈ C(G), is the cyclic decomposition of the given circulation, then x = (yβ(1), yβ(2),
. . . , yβ(col(A))) is the optimal (permissible) solution of the problem w.

Therefore, according to Definition 3, in the case of t1|t2 − equal|t3 − cycle reducibility of the
class W to the class WGraph it is ensured that if w ∈ W , v = v(G; lij , uij , cij , (i, j) ∈ AG) ∈ WGraph

and v is a problem corresponding to the problem w, then at constructing the problem of search
of the minimum-cost flow v the throughputs and costs of arcs are determined in the problem
in terms of the coefficients of the problem w, and the solution of the problem w is determined
through the cyclic decomposition of the solution of the problem v. Then, an algorithm of the
computing complexity O(t1 + t2 + t3 + μ(|VG|, |AG|)), where μ(n,m) is the computing complexity
of the algorithm for solution of the problem of search of the minimum-cost flow in a network with
n vertices and m arcs, can be suggested to solve the problem w on the basis of the solution of the
corresponding problem v. A review of the estimates of the computing complexity for the existing
flow algorithms can be found, for example, in [27, 28].

Theorem 1. Let the class of problems W be P |P −equal|P −cycle reducible to the class WGraph.
Then, the class of problems of integer linear programming WZ is solvable in a polynomial time.
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124 AFRAIMOVICH

The proofs of Theorem 1 and the following Lemmas 1 and 2 and Theorems 2 and 3 are given in
the Appendix. According to Theorem 1, separation of the subclasses of the multi-index problems
reducible to the flow problems also allows one to separate the polynomially solvable subclasses in
the NP-hard class of the integer multi-index problems.

5. REDUCIBILITY CONDITIONS FOR THE MULTI-INDEX PROBLEMS

We consider now the questions of constructing the subclasses of the multi-index problems which
can be reduced to the flow problems using the concept introduced in Definition 3. The class of
multi-index transport problems with a special decomposition structure turns out to be one of such
subclasses.

Definition 4. Let M ⊆ 2N(s) and f1, f2, . . . , fk be the decomposition of the set N(s). It will be
said that M is an f1, f2, . . . , fk-decomposition if M ⊆ {fi|i = 1, k} ∪ {fi ∪ fi+1|i = 1, k − 1}.

Definition 5. Let {cFN(s)
} be the s-index matrix and f1, f2, . . . , fk, the decomposition of

the set N(s). The multi-index matrix {cFN(s)
} will be said to be the f1, f2, . . . , fk-decom-

position if there are multi-index matrices {dFfi
} f ∈ B such that cFN(s)

=
∑

f∈B
d(FN(s))f , where

B = {fi|i = 1, k}∪{fi ∪ fi+1|i = 1, k − 1}.
Definition 6. Let f1, f2, . . . , fk be the decomposition of the set N(s). Then, we denote by

WD(f1, f2, . . . , fk) the following class of the multi-index transport problems with the decomposition
structure:

WD(f1, f2, . . . , fk) =
{
w(s;M ;n1, n2, . . . , ns; {aF

f
}, {bF

f
}, f ∈ M ; {cFN(s)

})|
M and {cFN(s)

} are f1, f2, . . . , fk-decomposition
}
.

Lemma 1. Let f1, f2, . . . , fk be the decomposition of the set N(s). Then,

k∑

i=1

|Efi | � |EN(s)|.

Lemma 2. Let f1, f2, . . . , fk be the decomposition of the set N(s). Then,

k−1∑

i=1

|Efi ||Efi+1
| � |EN(s)|.

Theorem 2. Let f1, f2, . . . , fk be decomposition of the set N(s). Then, the class of problems
WD(f1, f2, . . . , fk) is L|L− equal||EN(s)|2 − cycle reducible to the class WGraph.

The constructive scheme of the proof of Theorem 2 suggests an algorithm to solve problems of
the class WD(f1, f2, . . . , fk) by constructing the corresponding flow problem, seeking the minimum-
cost flow, and solving the original multi-index problem by cyclic decomposition of the established
flow. The well-known flow algorithms [27, 28] may be used to seek the minimum-cost flow. Whence
the following corollary is obtained.

Corollary 1. Let f1, f2, . . . , fk be a decomposition of the set N(s). Then, there exists an algo-
rithm to solve problems of the class WD(f1, f2, . . . , fk) requiring O(|EN(s)|3 log2 |EN(s)|) computing
operations.

The following result is obtained directly from Theorems 1 and 2 and Corollary 1.

Corollary 2. Let f1, f2, . . . , fk be the decomposition of the set N(s). Then, the class of problems
of integer linear programming WD

Z (f1, f2, . . . , fk) is solvable in a polynomial time.
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Figure.

We present an example of the multi-index transport problem with decomposition structure which
is solved using the above approach. Let s = 3. We consider the multi-index transport-type problem
of linear programming:

a−j3 �
∑

j1∈J1

∑

j2∈J2
xj1j2j3 � a+j3 , j3 ∈ J3;

b−j2 �
∑

j1∈J1

∑

j3∈J3
xj1j2j3 � b+j2 , j2 ∈ J2;

c−j1 �
∑

j2∈J2

∑

j3∈J3
xj1j2j3 � c+j1 , j1 ∈ J1;

d−j1j2 �
∑

j3∈J3
xj1j2j3 � d+j1j2 , j3 ∈ J3;

xj1j2j3 � 0, j1 ∈ J1, j2 ∈ J2, j3 ∈ J3;

∑

j1∈J1

∑

j2∈J2

∑

j3∈J3
(uj2j3 + vj2 +wj3)xj1j2j3 → min .

This multi-index problem is belongs to the class W (M) where M = {{1, 2}, {1, 3}, {2, 3}, {3}}.
We take the decomposition f1 = {1}, f2 = {2}, f3 = {3} of the set N(3). One can readily
see that M ⊆ {fi| i = 1, 3} ∪ {fi ∪ fi+1| i = 1, 2} = {{1, 2}, {1, 3}, {2, 3}, {1}, {3}}. There-
fore, according to Definition 4 M is an f1, f2, f3-decomposition set. Now, we notice that
{{2, 3}, {2}, {3}} ⊆ B ={fi| i = 1, 3} ∪ {fi ∪ fi+1| i = 1, 2} = {{1}, {2}, {3}, {1, 2}, {2, 3}}. Whence
it follows that, according to Definition 5, the multi-index cost matrix of the problem (as de-
fined by uj2j3 + vj2 + wj3) is the f1, f2, f3-decomposition one. Consequently, according to
Definition 6, the multi-index problem under consideration belongs to the class WD(f1, f2, f3),
L|L− equal||EN(s)|2 − cycle reducible to the class WGraph, where |EN(s)| = |J1||J2||J3|.

Now we consider an example of the reduction scheme used in the constructive proof of Theorem 2
(see the Appendix). Let |J1| = |J2| = |J3| = 2. We present the transport network defining the
problem of seeking the minimum-cost flow and corresponding to the original multi-index problem.

For some arcs the figure shows their throughputs and costs. The arcs without indication of
the throughput segments have zero lower throughput and unlimited upper throughput. The arcs
without indication of cost have zero cost. According to the proof of Theorem 2, the simple cycle
(s, v′j1{1}, v′′j1{1}, v′j2{2}, v′′j2{2}, v′j3{3}, v′′j3{3}, t, s), j1 ∈ J1, j2 ∈ J2, j3 ∈ J3 is assigned to the vari-

able xi1i2i3 . In virtue of L|L− equal||EN(s)|2 − cycle reducibility of the class WD(f1, f2, f3) to the
class WGraph, solution of the original multi-index problem is defined as follows: each variable of the
multi-index problem is assigned a value of the flow along the corresponding simple cycle which in
turn is obtained as a result of cyclic decomposition of the minimum-cost flow of the given network.
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6. APPROXIMATE SOLUTION OF THE INTEGER MULTI-INDEX PROBLEMS

The class of the multi-index problems of integer linear programming is NP-hard [19]. It is also
known that in the general case there exist no approximate polynomial algorithms for the multi-
index problems of integer linear programming; otherwise, P = NP [20]. Additionally, it may be
shown that there are no efficient approximate algorithms even in the class of the integer multi-
index problems with a system of constraints having the decomposition properties and the cost
matrix of general form.

The ε-approximate algorithm of [19] is as follows. Let W be the class of minimization problems;
H, the algorithm which returns the permissible solution H(w) of the problem w for any problem
w ∈ W ; c(H(w)), the value of the criterion of the problem w on the permissible solution H(w); and
OPT (w), optimal value of the criterion of w. Then, the algorithm H is called the ε-approximate
algorithm for the problems of class W , where ε is a nonnegative constant if the condition c(H(w)) �
(1 + ε)OPT (w), w ∈ W , is met.

Theorem 3. Let f1, f2, . . . , fk be the decomposition of the set N(s) and k � 3. Then, there exists
f1, f2, . . . , fk-decomposition set M such that for the problems of the class WZ(M) there exists no
polynomial ε-approximate algorithm for any ε � 0; otherwise, P = NP.

The following approach is proposed for seeking an approximate solution of the NP-hard problems
with a constraint system featuring the decomposition properties and having the general cost matrix.
We seek a multi-index cost matrix having the desired properties of decomposition and being the
“closest” to the cost matrix of the original problem. Then we determine solution of the auxiliary
problem with the original system of constraints and a new cost matrix. To seek solution of the
auxiliary problem, one may use the polynomial algorithm for solution of the problems of the class
WD

Z (f1, f2, . . . , fk) (see Corollaries 1 and 2). The established solution is a permissible solution of
the original multi-index problem of integer linear programming. By substituting the determined
solution of the auxiliary problem in the criterion of the original problem, we get a reachable estimate
that can be used, for example, for solving the NP-hard multi-index problems by the branch-and-
bound method [11].

Let us consider the proposed approach by way of example of the well-known NP-hard axial tri-
index assignment problem [19] which is formulated as the following Boolean programming problem:

n∑

j1=1

n∑

j2=1

xj1j2j3 = 1, j3 = 1, n; (7)

n∑

j1=1

n∑

j3=1

xj1j2j3 = 1, j2 = 1, n; (8)

n∑

j2=1

n∑

j3=1

xj1j2j3 = 1, j1 = 1, n; (9)

xj1j2j3 ∈ {0, 1}, j1, j2, j3 = 1, n; (10)
n∑

j1=1

n∑

j2=1

n∑

j3=1

cj1j2j3xj1j2j3 → min . (11)

Condition (10) is replaced by

xj1j2j3 ∈ Z+, j1, j2, j3 = 1, n. (12)

One can readily see that problems (7)–(11) and (7)–(9), (12), (11) are equivalent. Let now s = 3
and M = {{1, 2}, {2, 3}, {1, 3}}. Problem (7)–(9), (12), (11) belongs to the class WZ(M). We
notice that N(3) = {1, 2, 3} and {1}, {2}, {3} is a decomposition of the set N(3). According
to Definition 4, M is the {1}, {2}, {3}-decomposition set. However, it follows from Theorem 1
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and NP-hardness of the class WZ(M) that the class of problems W (M) is not P |P − equal|P −
cycle reducible to the class WGraph. Moreover, for the class WZ(M) there exists no polynomial
ε-approximate algorithm for any ε � 0, otherwise P = NP [20]. On the other hand, there are among
the problems of the class W (M) those whose multi-index cost matrix of the objective function has
decomposition properties. Let us consider the tri-index matrix ej1j2j3 = uj1j2+vj2j3 , j1, j2, j3 = 1, n
where {uj1j2} and {vj2j3} are two-index matrices. According to Definition 5, the tri-index matrix
{ej1j2j3} is the {1}, {2}, {3}-decomposition one. Let us consider the criterion

n∑

j1=1

n∑

j2=1

n∑

j3=1

(uj1j2 + vj2j3)xj1j2j3 → min . (13)

The subclass of problems W (M) where the objective function is representable as (13) is included
in the class WD({1}, {2}, {3}) and according to Theorem 2 is L|L−equal||EN(s)|2−cycle reducible
to the class WGraph. Whence it follows that, according to Corollary 2, problem (7)–(9), (12), (13)
is solvable in a polynomial time. We notice that here |EN(s)| = n3.

In the general case, at solving problems (7)–(9), (12), (11) we seek a {1}, {2}, {3}-decomposition
matrix like {ej1j2j3} which is most “close” to the original general-form matrix {cj1j2j3}. We consider
the following problem of search of the nearest decomposition of the cost matrix:

ej1j2j3 = uj1j2 + vj2j3 , j1, j2, j3 = 1, n; (14)

dist({cj1j2j3}, {ej1j2j3}) → min, (15)

where ej1j2j3 , uj1j2 , vj2j3 , j1, j2, j3 = 1, n, are the real unknown variables, and dist is some measure
of closeness of the multi-index matrices. Let us consider the function of the squared Euclidean
distance as the dist function. Then, problem (14), (15) becomes that of the unconditional quadratic
optimization:

n∑

j1=1

n∑

j2=1

n∑

j3=1

(cj1j2j3 − uj1j2 − vj2j3)
2 → min . (16)

The methods of minimization of the sum of squared residues may be used for solution of prob-
lem (16) [39]. Let u∗j1j2 , v∗j2j3 , j1, j2, j3 = 1, n, be solution of problem (16). Then, instead of the
original problem (7)–(9), (12), (11), we solve the problem with the same system of constraints and

with the criterion
n∑

j1=1

n∑

j2=1

n∑

j3=1
(u∗j1j2 + v∗j2j3)xj1j2j3 → min. According to Corollary 2, solution of

the constructed problem can be established in a polynomial time because it belongs to the class
WD

Z ({1}, {2}, {3}). As was already noted, the established solution is a permissible solution of
the original NP-hard assignment problem which may be used, for example, to seek the reachable
estimate at using the branch-and-bound method.

7. CONCLUSIONS

The present paper studies the t1|t2 − equal|t3 − cycle reducibility of the multi-index transport
problems to the class of problems of seeking the minimum-cost flow. The considered concept of
reduction enables one to establish correspondence between the variables of the original problem and
simple cycles of the auxiliary network. At that, the minimum-cost flow of the auxiliary network
defines an optimal solution of the original problem such where the variables are assigned the values
of flow along the corresponding simple cycles. The value of flow along simple cycles is determined
using the cyclic decomposition of the flow.

Specified was the class of multi-index transport problems of the decomposition structure
for which the L|L − equal||EN(s)|2 − cycle reducibility to the class of problems of seeking the
minimum-cost flow was proved. Relying on reducibility, constructed was a polynomial algorithm
to solve the multi-index transport problems with decomposition structure. The algorithm requires
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O(|EN(s)|3 log2 |EN(s)|) computing operations, where |EN(s)| is equal to the number of variables
of the multi-index problem. The constructed algorithm is also applicable to seeking an integer
solution.

The polynomial solvability of the integer multi-index transport problems with the decomposition
structure is of special interest for the following reasons. Formalization of the established class of
problems with the decomposition structure is related to some decomposition characteristics of the
constraint system of the problem and its multi-index matrix of criterion costs. As it happens,
for the class of the integer multi-index transport problems with a constraint system featuring the
decomposition characteristics and general cost matrix there exist no polynomial ε-approximate
algorithms for any ε � 0; otherwise, P = NP. Whence it follows that for the constraint systems
of the considered NP-hard problems of integer linear programming the specified class of the multi-
index cost matrices having the decomposition properties enables one to determine the class of
criteria for which the problem becomes polynomially solvable. On the basis of the constructed
polynomial algorithm for solution of the multi-index transport problems with the decomposition
structure, a heuristic algorithm to solve the NP-hard difficult-to-approximate integer multi-index
problems with a constraint system featuring the decomposition characteristics was proposed. It
seeks a matrix with the decomposition characteristics which is “closest” to the original cost matrix.

Further line of research is oriented to determining the necessary and sufficient conditions for
the t1|t2 − equal|t3 − cycle reducibility for the multi-index transport problems and developing new
concepts of reducibility enabling extension of the application domain of the flow algorithms for
solution of the multi-index problems. Estimation of deviations of the proposed heuristic algorithm
from the optimum is of special interest.

APPENDIX

Proof of Theorem 1. Let the class W be P |P − equal|P − cycle reducible to the class WGraph.
Then, according to Definition 3, for an arbitrary problem w ∈ W there exists its corresponding
problem v ∈ WGraph. At that, the corresponding problem v can be constructed in a polynomial
time dependent on the dimension of the problem w. Consequently, the dimension of the problem v
also depends polynomially on the dimension of the original problem w. The integer solution of
the flow problem v is known to be determinable by using, for example, the polynomial methods of
solution of the flow problems [26]. According to Assertions 1 and 2, the integer cyclic decomposition
of the integer solution of the problem v can be constructed in a polynomial time. According to
Definition 3, the integer solution of the problem w can be determined in a polynomial time in
terms of the constructed integer cyclic decomposition. Then, the integer solution of the problem w
determined in a polynomial time is also a solution of the problem wZ . Whence it follows that the
class of problems WZ is solvable in a polynomial time, which proves Theorem 1.

Proof of Lemma 1. Let f1, f2, . . . , fk be a decomposition of the set N(s). Then, |Efi | =
∏

j∈fi
nj,

i = 1, k, and |EN(s)| =
s∏

l=1
nl =

k∏

i=1

∏

j∈fi
nj =

k∏

i=1
|Efi |. We denote for convenience |Efi | = mi,

i = 1, k. Then, |EN(s)| =
k∏

i=1
mi. Since nl � 2, l = 1, s, we get mi � 2, i = 1, k.

One can readily see that k � 2k−1 �

k∏

i=1

mk

max
i=1,k

mi
. Then,

k∑

i=1
mi � kmax

i=1,k
mi � 2k−1 max

i=1,k
mi �

k∏

i=1

mk

max
i=1,k

mi
max
i=1,k

mi =
k∏

i=1
mk, which proves Lemma 1.
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Proof of Lemma 2. Let f1, f2, . . . , fk be a decomposition of the set N(s). Similar to the proof

of Lemma 1, we denote for convenience |Efi | = mi � 2, i = 1, k, and |EN(s)| =
k∏

i=1
mi.

One can readily see that k−1� 2k−2 �

k∏

i=1

mk

max
i=1,k−1

mimi+1
. Then,

k−1∑

i=1
mimi+1 � (k−1) max

i=1,k−1
mimi �

2k−2 max
i=1,k−1

mimi �

k∏

i=1

mk

max
i=1,k−1

mimi
max

i=1,k−1
mimi =

k∏

i=1
mk, which proves Lemma 2.

Proof of Theorem 2. Let f1, f2, . . . , fk be a decomposition of the set N(s). We con-
sider an arbitrary problem w ∈ WD(f1, f2, . . . , fk). According to Definition 6, the prob-
lem w = w(s;M ;n1, n2, . . . , ns; {aF

f
}, {bF

f
}, f ∈ M ; {cFN(s)

}), where M and {cFN(s)
} are the

f1, f2, . . . , fk-decompositions. Without loss of generality we assume that M = {fi|i = 1, k} ∪
{fi ∪ fi+1|i = 1, k − 1}; otherwise, we add the missing two-sided inequalities and take zero as
the lower bound and a sufficiently great value such as

∑

F
f ′∈Ef ′

bF
f ′
, where f ′ is an arbitrary el-

ement of M , as the upper bound. Now we present the procedure for constructing the problem
v = v(G; lij , uij , eij , (i, j) ∈ AG) ∈ WGraph which corresponds to the problem w. We construct an
oriented graph G with the sets of vertices, VG = {v′Ffi

, v′′Ffi
|Ffi ∈ Efi , i = 1, k} ∪ {s, t}, and arcs,

AG = A1 ∪ A2 ∪A3, where

—A1 = {(v′Ffi
, v′′Ffi

)|Ffi ∈ Efi , i = 1, k};
—A2 = {(v′′Ffi

, v′Ffi+1
)|Ffi ∈ Efi , Ffi+1

∈ Efi+1
, i = 1, k − 1};

—A3 = {(s, v′Ff1
)|Ff1 ∈ Ef1} ∪ {(v′Ffk

, t)|Ffk ∈ Efk} ∪ {(t, s)},
and define the function α as follows:

—the arc (v′Ffi
, v′′Ffi

) is assigned to each constraint d(w, fi, Ffi); therefore, in the problem v the

lower and upper bounds of this arc are, respectively, aFfi
and bFfi

, Ffi ∈ Efi , i = 1, k;

—the arc
(
v′′(Ffi∪fi+1

)fi
, v′(Ffi∪fi+1

)fi+1

)
is assigned to each constraint d(w, fi ∪ fi+1, Ffi∪fi+1

);

therefore, in the problem v the lower and upper bounds of this arc are, respectively, aFfi∪fi+1

and bFfi∪fi+1
, Ffi∪fi+1

∈ Efi∪fi+1
, i = 1, k − 1.

Since w ∈ WD(f1, f2, . . . , fk), according to Definitions 5 and 6 there are multi-index matrices
{dFfi

}, f ∈ B such that cFN(s)
=

∑

f∈B
d(FN(s))f , where B = {fi| i = 1, k} ∪ {fi ∪ fi+1| i = 1, k − 1}.

Then, the costs of arcs in the problem v are as follows:

—ev′Ffi
v′′Ffi

= dFfi
, Ffi ∈ Efi , i = 1, k;

—ev′′Ffi
v′Ffi+1

= dFfi
Ffi+1

, Ffi ∈ Efi , Ffi+1
∈ Efi+1

, i = 1, k − 1;

—eij = 0, (i, j) ∈ A3.

By condition, f1, f2, . . . , fk is the decomposition of the set N(s). Therefore, each element is
representable unambiguously as FN(s) = Ff1Ff2 . . . Ffk . We denote CFN(s)

= (s, v′Ff1
, v′′Ff1

, v′Ff2
,

v′′Ff2
, . . . , v′Ffk

, v′′Ffk
, t, s). By construction, C(G) = {CFN(s)

|FN(s) ∈ EN(s)}. Then, the function β

is defined as follows: a simple cycle CFN(s)
, FN(s) ∈ EN(s), is assigned to each variable xFN(s)

.

We prove that the constructed problem v is consistent if and only if the original problem w is con-
sistent as well. Indeed, let xFN(s)

, FN(s) ∈ EN(s), be a permissible solution of the constraint system
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of the problem w. We determine yCFN(s)
= xFN(s)

, FN(s) ∈ EN(s). Now, let zij =
∑

C∈C(G)|(i,j)∈C
yC ,

(i, j) ∈ AG. The set zij , (i, j) ∈ AG, is the circulation in the graph G and by construction

—zv′Ffi
v′′Ffi

=
∑

F
fi

∈E
fi

xF
fi

Ffi
, Ffi ∈ Efi , i = 1, k;

—zv′′
(Ffi∪fi+1

)fi
v′
(Ffi∪fi+1

)fi+1

=
∑

F
fi∪fi+1

∈E
fi∪fi+1

xF
fi∪fi+1

Ffi∪fi+1
, Ffi∪fi+1

∈ Efi∪fi+1
, i = 1, k − 1.

Then, the set zij , (i, j) ∈ A, according to the introduced function α, is the permissible circulation
of the problem v.

Now, let zij , (i, j) ∈ AG, be the permissible circulation of the problem v. According to Asser-
tion 1, for the given circulation there exists its cyclic decomposition yC , C ∈ C(G). By construction,

—aFfi
� ∑

F
fi
∈E

fi

yCF
fi

Ffi
= zv′

Ffi
v′′
Ffi

� bFfi
, Ffi ∈ Efi , i = 1, k;

—aFfi∪fi+1
� ∑

F
fi∪fi+1

∈E
fi∪fi+1

yCF
fi∪fi+1

Ffi∪fi+1
= zv′′

(Ffi∪fi+1
)fi

v′
(Ffi∪fi+1

)fi+1

� bFfi∪fi+1
, Ffi∪fi+1

∈

Efi∪fi+1
, i = 1, k − 1.

According to the introduced function β, we construct the following set of values of variables:
xFN(s)

= yCFN(s)
, FN(s) ∈ EN(s), which is a permissible solution of the problem w.

Let zij, (i, j) ∈ AG, be a minimum-cost circulation in the problem v and yC ,C ∈ C(G), its cyclic
decomposition. With the use of the function β we construct the following set of values of the vari-
ables xFN(s)

= yCFN(s)
, FN(s) ∈ EN(s), which was shown above to be a permissible solution of the

problem w. Now we prove by contradiction that the constructed set is the optimal solution of the
problem w. Indeed, let this be not the case, and x′FN(s)

, FN(s) ∈ EN(s), be the optimal solution of

the problem w. Then, by the assumption
∑

FN(s)∈EN(s)

cFN(s)
xFN(s)

>
∑

FN(s)∈EN(s)

cFN(s)
x′FN(s)

.

By construction,
∑

(i,j)∈AG

eijzij =
∑

(i,j)∈AG

eij
∑

C∈C(G)|(i,j)∈C
yC =

∑

C∈C(G)
yC

∑

(i,j)∈C
eij =

∑

FN(s)∈EN(s)

yCFN(s)

∑

f∈B
d(FN(s))f =

∑

FN(s)∈EN(s)

cFN(s)
xFN(s)

. We determine y′CFN(s)
= x′FN(s)

, FN(s) ∈
EN(s), and z′ij =

∑

C∈C(G)|(i,j)∈C
y′C , (i, j) ∈ AG. As was already shown, the so-

constructed set z′ij , (i, j) ∈ AG, is a permissible circulation of the problem v. At that,
∑

FN(s)∈EN(s)

cFN(s)
x′FN(s)

=
∑

FN(s)∈EN(s)

cFN(s)
y′FN(s)

=
∑

FN(s)∈EN(s)

y′CFN(s)

∑

f∈B
d(FN(s))f =

∑

C∈C(G)
y′C

∑

(i,j)∈C
eij =

∑

(i,j)∈AG

eij
∑

C∈C(G)|(i,j)∈C
y′C =

∑

(i,j)∈AG

eijz
′
ij . Then,

∑

(i,j)∈AG

eijzij =

∑

FN(s)∈EN(s)

cFN(s)
xFN(s)

>
∑

FN(s)∈EN(s)

cFN(s)
x′FN(s)

=
∑

(i,j)∈AG

eijz
′
ij , that is, we get a contradiction.

Therefore, the above assumption is incorrect and the constructed set xFN(s)
, FN(s) ∈ EN(s), is the

optimal solution of the problem w.

We analyze complexity of the computing procedures related with construction of the problem v
and solution of the problem w from the solution of the problem v. We notice that the original
problem w has |EN(s)| variables. By construction, in the problem v the graph G has |V | = 2 +

2
k∑

i=1
|Efi | vertices and |A| = 1 + |Efi | + |Efk | +

k−1∑

i=1
|Efi ||Efi+1

| arcs. Lemmas 1 and 2 enable

us to establish the following estimates |V | = O(|EN(s)|), |A| = O(|EN(s)|). Whence it follows
that construction of the problem v creates linear computer burden vs. to the dimension of the
problem w. Solution of the problem w from the solution of the problem v entails construction of
the cyclic decomposition of the circulation on the graph G. By Assertion 2, construction of the
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cyclic decomposition requires O(|V ||A|) = O(|EN(s)|2) computing operations. Whence it follows
that the class W (f1, f2, . . . , fk) is L|L− equal||EN(s)|2− cycle reducible to the class WGraph, which
proves Theorem 2.

Proof of Theorem 3. Let f1, f2, . . . , fk be the decomposition of the set N(s) and k � 3. We
consider the set M = {f1, f2, f3}. According to Definition 4, M is the f1, f2, . . . , fk-decomposition
set. We prove that the equality P = NP follows from existence of the polynomial ε-approximate
algorithm of solution of problems of the class WZ(M), where ε is an arbitrary nonnegative constant.

We consider the well-known NP-complete problem of the tri-dimensional combination [19] which
can be formalized as follows. Let U ⊆ {1, 2, . . . ,m}3, where m ∈ N . Then, the problem lies in
verifying for consistence the following integer system of linear inequalities:

m∑

i=1

m∑

j=1

yijk = 1, k = 1,m;

m∑

i=1

m∑

k=1

yijk = 1, j = 1,m;

m∑

j=1

m∑

k=1

yijk = 1, i = 1,m;

yijk ∈ {0, 1}, (i, j, k) ∈ U ;

yijk = 0, (i, j, k) ∈ {1, 2, . . . ,m}3\U.

We take a problem wZ ∈ WZ(M) satisfying the conditions |Ef1 | = |Ef2 | = |Ef3 | = m and
numerate the elements of the set Efl , l = 1, 3, as follows: Efl = {Ffl,1, Ffl,2, . . . , Ffl,m}, l = 1, 3.
Since f1, f2, f3, f

′ is a decomposition of the set N(s), where f ′ = N(s)\(f1∪f2∪f3), any element of
FN(s) ∈ EN(s) is representable as FN(s) = Ff1Ff2Ff3Ff ′ . The costs cFN(s)

, FN(s) ∈ EN(s), are defined
as follows. Let cFN(s)

= 0 if FN(s) = Ff1,iFf2,jFf3,kFf ′ , where (i, j, k) ∈ U and Ff ′ = (1, 1, . . . , 1),
and cFN(s)

= 1, otherwise. Finally, we determine the values of the free coefficients of the two-sided

inequalities in the problem wZ . Let aFfl
= bFfl

= 1, where Ffl ∈ Efl , l = 1, 3.

We denote by OPT (wZ) the optimal value of the criterion of the selected problem wZ . We can
readily see that OPT (wZ) = 0 if and only if the constraint system of the problem of tri-dimensional
combination is consistent. At that, if OPT (wZ) �= 0, then OPT (wZ) � 1.

Let there be a polynomial ε-approximate algorithm H for solution of problems of the class
WZ(M), where ε � 0. We denote byH(wz) the permissible solution established by the algorithm H;
the value of the criterion of the problem wZ on the solution H(wz) is denoted by c(H(wz)). If
c(H(wz)) = 0, then OPT (wZ) = 0 and the constraint system of the problem of tri-dimensional
combination is consistent. If c(H(wz)) �= 0, then c(H(wz)) � 1. Yet, since H is polynomial
and ε-approximate the condition 1 � c(H(wz)) � OPT (wZ)(1 + ε) is satisfied, whence it follows
that OPT (wZ) � 1/(1 + ε) > 0. Since OPT (wZ) �= 0, the constraint system of the problem of
tri-dimensional combination is inconsistent.

Consequently, one may suggest the following polynomial algorithm to solve the problem of tri-
dimensional combination. According to the aforementioned scheme, construct the corresponding
problem wZ ∈ WZ(M) for the selected problem of tri-dimensional combination. Apply then the
polynomial ε-approximate algorithm H to solve the problem wZ . If c(H(wz)) = 0, then the con-
straint system of the problem of tri-dimensional combination is consistent; otherwise, inconsistent.
Yet, since the problem of tri-dimensional combination is NP-complete, it follows from the existence
of the polynomial algorithm for its solution that P = NP [19], which proves Theorem 3.
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